
Digital Product
Development

IOB2-2 Module 4

Data

By Alessandro Bozzon

PART 1

2

Learning
Objectives

Jacky Bourgeois

• Understand the reasons for using a
Database and the importance of Database
Management Systems

• Describe the main characteristics of a DBMS

• Understand the importance of data

abstraction and modelling for data
management systems

• Describe and design SQL programs for the
retrieval of data from tables

• Prototype database applications using open-
source database systems (e.g., SQLite)

3

Why Databases?

WHY DATABASES?

MANAGEMENT OF INFORMATION

▸ Information is handled and recorded according to various techniques:

▸ Informal ideas

▸ Natural language (written or spoken)

▸ Drawings, Diagrams

▸ Numbers

▸ Codes

▸ As activities become systematised, appropriate forms of organisation and
codification for information have been devised

▸ E.g. Information about people

4

WHY DATABASES?

MANAGEMENT OF INFORMATION
In most computer-based systems (including software-based products)
information is represented by means of data

▸ Data: raw facts, to be interpreted and correlated in order to provide
information

▸ Information: Data processed in such a way that the information now has
relevance for a specific purpose or context, and is therefore meaningful,
valuable, useful and relevant

▸ answering interrogative questions (e.g., ”who”, ”what”, ”where”, ”
how many”, ”when”)

▸ Knowledge: organisation and processing of information to convey
understanding and experience

“Alessandro” and 2 are a string and a number — two pieces of data

If they are provided as a reply to a request

‣ “2nd year course lectured by a teacher named Alessandro”

 then we get information out of them

When we combine this information with other details from the
CourseBase, we gain “understanding” of the didactic offer of the IDE
Faculty for bachelor students

5

WHY DATABASES?

© EBG Consulting, 2016
www.ebgconsulting.com | www.DiscoverToDeliver.com

7 Product Dimensions

© EBG Consulting, 2016
www.ebgconsulting.com | www.DiscoverToDeliver.com

▸ The Data dimension
describes the data and
useful information the
product stores and uses.

▸ This includes data
needed by actions and
data sent and received
via product interfaces.

WHY DATABASES?

WHY IS DATA SO IMPORTANT?

▸ No organisation can operate without a good strategy for data management
and access

▸ It is a core asset, and it must be managed and protected

Data is at the very core of every information systems

Data has a longer life-cycle than the processes and organisations that manage
them

▸ e.g. bank data management systems did not change in decades (or centuries)

▸ But the processes that manage them change every year

7

WHY DATABASES?

DEFINITIONS OF DATABASE
▸ Generic Definition

▸ A collection of interrelated data, used to represent information of interest to an
information system

▸ Represents some aspects of the real world: the Universe of Discourse (UoD)

▸ The problem setting under consideration

▸ It consider the point of view of an actor (or a set of actors) in the system

▸ A database is logically coherent in such setting, and it has meaning in it

▸ Is shared between different software applications and different users

▸ More Technical Definitions

▸ A collection of files that store the data

A collection of interrelated data, used to represent information of
interest to an information system

A collection of files that store the data

8

9

Database Management
Systems (DBMS)

DATABASE MANAGEMENT SYSTEMS

DEALING WITH DATA

10

▸ How to manage large and persistent sets of data?

https://www.imdb.com/title/tt1301160/ https://www.imdb.com/name/nm1574516/

▸ 5M Titles

▸ A movie page contains information

about actors, their roles in the movie, etc.

▸ 9M Names

▸ An actor’s page contains biographic

information, their roles in movie, etc.

DATABASE MANAGEMENT SYSTEMS

DEALING WITH DATA
▸ How to manage large and persistent sets of data?

▸ File systems

▸ Store the data in files

▸ Developers define and implement the files needed for a specific software

▸ A description of the organisation of the files (often just a stream of bytes)

▸ Application logic to access / query / update files content

movies.txt actors.txt

12

actorid, name, gender,year, movies

2213918,Robert Simper,m,||The Matrix||Cop

3797028,Miranda Richardson,f,||The Evening Star||Patsy Carpenter||
Muppets Most Wanted||Berliner at Window

1411109,Enrico Lo Verso,m,||Hannibal||Gnocco

2897965,Tanya Champoux,f,||The Day the Earth Stood Still||Isabel

4022321,Kathy Graves Toon,f,||Horton Hears a Who!||Additional Voice

3004466,Debi Derryberry,f,||Horton Hears a Who!||Who Mom||Horton
Hears a Who!||Additional Voices||Jimmy Neutron: Runaway Rocketboy!||
Jimmy Neutron

591926,Johnny Depp,m,||Close Up||Himself||London Fields||Chick
Purchase||Rock and a Hard Place: Another Night at the Agora||Himself||
Pearl Jam Twenty||Himself||The Rum Diary||Kemp

1179714,Israel Juarbe,m,||The Net||Thief

2854981,Carol Burnett,f,||Horton Hears a Who!||Kangaroo

2017355,Bertrand Roberson Jr.,m,||The Day the Earth Stood Still||Soldier

1974351,Blair Redford,m,||The Day the Earth Stood Still||Army Fighter
Pilot #1

567375,Robert De Niro,m,||Close Up||Himself||Les cent et une nuits de
Simon Cinma||Le mari de la star-fantasme en croisire||The Audition||Robert
De Niro||I sogni nel mirino||Himself||Lennon or McCartney||Himself||
Stardust||Captain Shakespeare

3715153,Janaya Pender,f,||The Matrix||Potential

1564754,Jake McLaughlin,m,||The Day the Earth Stood Still||Soldier

movieid, movietitle, year, roles

4200972,Providence,1991,||Clinton Oie||Poetry Host||Keanu Reeves||Eric||
Yvonne de la Vega||Herself||Tracii Show||Trish

4477062,The Matrix,1999,||Julian Arahanga||Apoc||David Aston||
Rhineheart||Jeremy Ball||Businessman||Michael Butcher||Cop Who
Captures Neo||Marcus Chong||Tank||Steve Dodd||Blind Man||Matt
Doran||Mouse||Mike Duncan||Twin||Nash Edgerton||Resistance
Member||Laurence Fishburne||Morpheus||Paul Goddard||Agent Brown||
Marc Aden Gray||Choi||Nigel Harbach||Parking Cop||Harry Lawrence||
Old Man||Bernard Ledger||Big Cop||David O'Connor||FedEx Man||Joe
Pantoliano||Cypher||Anthony Ray Parker||Dozer||Chris Pattinson||Cop||
Luke Quinton||Security Guard||Keanu Reeves||Neo||Robert Simper||
Cop||Robert Taylor||Agent Jones||Hugo Weaving||Agent Smith||Adryn
White||Potential||Rowan Witt||Spoon Boy||Lawrence Woodward||
Guard||Bill Young||Lieutenant||Tamara Brown||Potential||Gloria Foster||
Oracle||Deni Gordon||Priestess||Fiona Johnson||Woman in Red||Belinda
McClory||Switch||Rana Morrison||Shaylae - Woman in Office||Carrie-
Anne Moss||Trinity||Ada Nicodemou||Dujour||Janaya Pender||Potential||
Natalie Tjen||Potential||Eleanor Witt||Potential

movies.csv actors.csv

var fs = require("fs");

var actors = require('fs').readFileSync('actors.csv').toString().match(/^.+$/gm);

var movies = require('fs').readFileSync('movies.csv').toString().match(/^.+$/gm);

for (i = 0; i < movies.length; i++){

 title = movies[i].split(',')[1]

 year = movies[i].split(',')[2]

 if (title == 'The Matrix'){

 console.log('Title:', title)

 console.log('--- Women in Cast ---')

 var cast = movies[i].split(',')[3]

 var actors_in_movie = cast.split('||')

 for (j = 1; j < actors_in_movie.length; j=j+2){

 for (k = 0; k < actors.length; k++){

 name = actors[k].split(',')[1]

 gender = actors[k].split(',')[2]

 if(name == actors_in_movie[j] && gender == 'f'){

 console.log(name, 'as', actors_in_movie[j+1])

 }

 }

 }

 }

};

Retrieve the name and role of actresses that played in “The Matrix”

Title: The Matrix
--- Women in Cast ---
Tamara Brown as Potential
Gloria Foster as Oracle
Deni Gordon as Priestess
Fiona Johnson as Woman in Red
Belinda McClory as Switch
Rana Morrison as Shaylae - Woman in Office
Carrie-Anne Moss as Trinity
Ada Nicodemou as Dujour
Janaya Pender as Potential
Natalie Tjen as Potential
Eleanor Witt as Potential

query.js

DATABASE MANAGEMENT SYSTEMS

WHAT IF …

▸ Several applications make use of the same data

▸ The system crashes

▸ The dataset grows (let’s say, up to 100 Tb)

▸ Many users want to access to the data, possibly concurrently

▸ Information needs are not pre-defined

▸ ….

We need a more efficient and effective solution:

A Database Management System

15

DATABASE MANAGEMENT SYSTEMS

DATABASE MANAGEMENT SYSTEM

A software system able to manage collections of
data that are

▸ Large: bigger, much bigger that the main
memory available

▸ Shared: used by various applications and users

▸ Persistent: with a lifespan that is not limited to
single executions of the programs that use
them

16

DATABASE MANAGEMENT SYSTEMS

MAIN FUNCTIONS OF A DBMS

▸ Queries

▸ To retrieve data that match certain selection criteria expressed in the query

▸ Queries do not change the state of the database

▸ Transactions

▸ To insert, delete, and update data in the database.

▸ Transactions change the state of the database

▸ Security

▸ Authentication, i.e. verification of the identity of a client application

▸ Authorisation, i.e. the enforcement of access and execution rules

for queries and transactions

▸ More later

C

R

U

D

reate

ead

pdate

elete

17

DATABASE MANAGEMENT SYSTEMS

TYPICAL FEATURES OF DBMSs

▸ Data Integrity and Evolution

▸ Durability, Integrity, Correctness, Evolvability

▸ Performance

▸ Scalability, Elasticity, Latency, Throughput, Partition Tolerance

▸ Security and Privacy

▸ Security, Confidentiality, Non-Repudiation

18

DATABASE MANAGEMENT SYSTEMS

ADDITIONAL ADVANTAGES OF DBMSs

▸ Reduced application development time

▸ Economies of scale

▸ Efficient query processing

▸ Several (built-in or external) user interfaces

▸ Self-describing nature

▸ DBMSs might contain complete definition of structure (Meta-data) and
rules of validity

19

DATABASE MANAGEMENT SYSTEMS

CLASSIFICATION OF DBMSs / TYPE OF USAGE

▸ Operational Databases: OnLine Transaction processing (OLTP)

▸ Management of dynamic data in real-time (e.g. banking)

▸ Emphasis on transaction efficiency and on support of

daily operations

▸ Main concern: concurrency

▸ Users: personnel, end users

▸ Analytical Databases: OnLine Analytical Processing (OLAP)

▸ Interactive analysis of multi-dimensional data (e.g. sales

reports)

▸ Emphasis on data integration and aggregation

▸ Main concerns: storage and query execution time

▸ Users: managers, executive, data scientists

20

OLTP DB

OLAP DB

Business

Data Warehousing

Business

Processes

Data Mining

Data Analysis

Big Data

Master Data

Transactions

Operations

Information

DATABASE MANAGEMENT SYSTEMS

▸ Centralised

▸ Database is located, stored, and maintained in a single

computer

▸ Advantages: minimal redundancy, better security and

preservation

▸ Disadvantages: single point of failure, scalability /

elasticity

▸ Distributed

▸ Database and the DBMS software are distributed from

various sites that are connected by a computer network

▸ Advantages: availability, scalability / elasticity, redundancy

▸ Disadvantages: complexity, security, data integrity

CLASSIFICATION OF DBMSs / DISTRIBUTION

21

DB
Client

Client Web
Application

Web Client Web Client

Web Client

Web Client

DB/4

Client

Web Client Web Client

DB/1

DB/2

DB/3

DB/1R

Client

Client

Web

Application

D
istributed

Centralised

DATABASE MANAGEMENT SYSTEMS

CLASSIFICATION OF DBMSs / DATA MODEL
Relational Non - Relational

▸ Based on the relational model (Codd, 1970)

▸ Data organised in homogeneous set of tuples (rows)
forming relations (tables)

▸ SQL as generic data definition, manipulation and query
language for relational data

▸ Ensure atomicity, consistency, isolation, and durability
(ACID paradigm)

▸ Examples: PostgreSQL, MySQL, SQL Server, SQLite,
Oracle, MariaDB, etc.

▸ Key-Value

▸ Records only containing a key and a value. The key
uniquely identify the record, the value is an arbitrary
chunk of data

▸ Examples: Amazon Dynamo, Redis

▸ Document-oriented

▸ Similar to key/value, but require structure data as values

using formats like XML or JSON

▸ Examples: MongoDB, CouchDB

▸ Wide-Column

▸ Store data by Columns-Families, rather than by row

▸ Examples: Google BigTable, DynamoDB, Apache

Cassandra

▸ Graph

▸ Data organised in graphs. Nodes describe main data

entities, edges describe relationships.

▸ Example: Neo4J

22

DATABASE MANAGEMENT SYSTEMS

CLASSIFICATION OF DBMSs / DATA MODEL

23

Movie

MovieID

Title

Year

Genre

Actor

ActorID

Name

Gender

BirthDate

Role

MovieID

ActorID

RoleName

Movie Dimension

MovieID

Title

Year

Genre

Actor Dimensions

ActorID

Name

Gender

BirthDate

ProjectionFact

MovieID

ActorID

DirectorID

TheatreID

Spectators

Director Dimension

DirectorID

Name

Gender

BirthDate

Theatre Dimensions

TheatreID

Name

City

Capacity

MovieActor

Director Theatre

Played in

Projected in

Directed By

Worked With

Actor Gende
r

Role
Keanu Reeves M
 Neo

Laurence Fishburne M Morpheus

Carrie-Anne Moss F Trinity

Title The Matrix
Genre Action
Year 1999
Director Name The Wachowski Brothers

Key MovieID Movie Title Actor Name Role Director Theatre

1 1 The Matrix
 Keanu Reeves Neo

2 1 The Matrix Carrie-Anne Moss Trinity

3 1 The Matrix The Wachowski Brothers

4 1 The Matrix Pathe’ Delft

“List value 1” “List value 2”

{ “key” : “value 1” }

{ “key” : “value 1” }{ “hash” : [“key 1”: “value 1”,

 “key 2”: “value 2”]}

Dimensional GraphRelational

Wide-ColumnKey-Value Document

DATABASE MANAGEMENT SYSTEMS

WHEN NOT TO USE A DBMS
▸ More desirable to use regular files for:

▸ Simple, well-defined database applications not expected to change at all

▸ Stringent, real-time requirements that may not be met because of DBMS overhead

▸ Embedded systems with limited storage capacity

▸ No multiple-user access to data

It is just someone else’s C program 
In the beginning we may be impressed by its speed 
But later we discover that it can be frustratingly slow

We can do any particular task faster outside the DBMS

24

Digital Product
Development

IOB2-2 Module 4

Data

By Alessandro Bozzon

PART 2

26

Interacting with
Databases

INTERACTING WITH DATABASES

DBMS LANGUAGE CLASSES

▸ Data Definition Language (DDL)

▸ Defines the logical and physical schema

▸ Often used also for access authorisation specification

▸ Data Manipulation Language (DML)

▸ Allows retrieval, insertion, deletion, modification of database

instances

▸ Storage Definition Language (SDL)

▸ Specifies the internal schema

▸ View Definition Language (VDL)

▸ Specifies user views/mapping to conceptual schema

▸ Typically the same as DDL

27

SQL Cypher

MongoDB QL

SQL Cypher

MongoDB QL

SQL

MongoDB QL

INTERACTING WITH DATABASES

DATABASE LANGUAGES

▸ Various forms (a contribution to effectiveness)

▸ Interactive textual and declarative language

▸ SQL (Structured Query Language - Relational DBMSs)

▸ CYPHER (Neo4J)

▸ MongoDB QL (MongoDB)

▸ Interactive commands embedded in a host language
(Java, C++, Python, Javascript)

▸ By means of non-textual user-friendly interfaces

▸ Graphical user interfaces (e.g. PGAdmin, Neo4J

Browser)

▸ Natural language interfaces

▸ Interfaces for the DBA

Neo4J Browser UI

MATCH (T:TITLE{

 TITLE_NAME: 'THE MATRIX',

 PRODUCTION_YEAR: ‘1999'}

)-[R:HAS_CAST]->(C:CASTINFO)<-[S:PARTICIPATES_IN]-(P:PERSON)

RETURN DISTINCT P.NAME

Neo4J Query

28

THE SQL LANGUAGE

THE SQL LANGUAGE

THE SQL LANGUAGE

▸ The name is an acronym for Structured Query
Language

▸ Far richer than a query language: a DML, a DDL/
VDL

▸ SQL is a set-based language

▸ operators works on relations (tables)

▸ results are always relations (tables)

▸ SQL is declarative

▸ It describes what to do with data, not how to

do it

30

INTERACTING WITH DATABASES

SQL - STRUCTURED QUERY LANGUAGE

▸ A text-based declarative language for relational databases used as:

▸ DDL and VDL by DBMS designer and DBA

▸ DML by users

SELECT DISTINCT P.NAME

FROM PERSON P JOIN CAST_INFO K ON (P.ID = K.PERSON_ID)

 JOIN TITLE T ON (K.MOVIE_ID = T.ID)

WHERE T.TITLE = 'THE MATRIX’ AND T.PRODUCTION_YEAR = 1999;

Query: find the name of all the actors that played a part in the movie “The Matrix” produced in 1999

31

THE SQL LANGUAGE

SQL IS INTERGALACTIC DATA SPEAK

▸ Successful, mainstream, and general purpose 4GL (fourth
generation programming language) — perhaps the only
one

▸ Many standards out there:

▸ ANSI SQL, SQL92 (a.k.a. SQL2), SQL99 (a.k.a. SQL3), ….

▸ Vendors support various subsets (or supersets!)

Credits: Dave Roth

Chamberkin, Boyce. http://www.joakimdalby.dk/HTM/sequel.pdf

32

EXAMPLE DATABASES

EXAMPLE DATABASES

EXAMPLE DB1: EMPLOYEES

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

San JonéResearch Sunset Street

Pond Road

London
City

London

Rue Victor Hugo Toulouse
Distribution
Production

Administration

Brighton

DeptName

Planning Bond Street

Address
Bond Street

Department

34

EXAMPLE DATABASES

EXAMPLE DB2: PRODUCTS

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

35

EXAMPLE DATABASES

EXAMPLE DB3: IMDB

▸ A subset of the schema and data from
the IMDB.com website

▸ Actors (person_100k), Movies (title_100k),
and Actors in Movies (cast_info_100k)

▸ Plus aliases, keywords, movie genres, etc.

▸ Get it (with import instructions) here

▸ https://docs.google.com/document/d/

1jj3cMAnk6Rc0mHkkOAIYDzYLjKisCuyj4-3KF9l-_8o

▸ The instructions are for PostgresQL.
Reach out to the teaching team if you
are interested

36

http://IMDB.com
https://docs.google.com/document/d/1jj3cMAnk6Rc0mHkkOAIYDzYLjKisCuyj4-3KF9l-_8o
https://docs.google.com/document/d/1jj3cMAnk6Rc0mHkkOAIYDzYLjKisCuyj4-3KF9l-_8o

QUERYING

QUERYING

SQL AS A QUERY LANGUAGE

▸ SQL expresses queries in declarative way

▸ queries specify the properties of the result,

not the way to obtain it

▸ Queries are translated by the query
optimiser into the procedural language
internal to the DBMS

▸ The programmer should focus on
readability, not on efficiency

38

QUERYING

SQL QUERIES

▸ The three parts of the query are usually called:

▸ Target list or SELECT clause

▸ FROM clause

▸ WHERE clause

▸ The query:

▸ considers the cartesian product of the tables in the FROM clause

▸ considers only the rows that satisfy (evaluate to TRUE) the condition in the WHERE clause

▸ for each row evaluates the attribute expressions in the TargetList, and returns them

▸ More on GROUP BY and HAVING later

▸ Expressed by the SELECT statement

SELECT TargetList

FROM Table

[WHERE Conditions] [ORDER BY OrderingAttributesList]

[GROUP BY GroupingAttributesList] [HAVING AggregateConditions]

SELECT CLAUSE

SELECT CLAUSE

▸ Find the code of all products in the DB

41

SELECT QUERY FROM /1

SELECT CodeP

FROM Products

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

P1

P4
P3

P6

P2

P5

CodeP

SELECT CLAUSE

SELECT QUERY FROM /2

Only the tuples evaluating the logical expression in the WHERE clause

to TRUE are selected

▸ Find the code and number of shareholders of suppliers located in “Den Haag”

42

SELECT CodeS, Shareholders

FROM Supplier

WHERE Office = “Den Haag”

S3

CodeS Shareholders
S2

3
1

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier

SELECT CLAUSE

* IN THE TARGET LIST
▸ Find all the information relating to employees named “Brown”

43

Planning 14Brown London80Charles
London
CitySalary

4510
Dept

Brown
Surname Office

Mary
FirstName

Administration

SELECT *

FROM Employee

WHERE Surname = “Brown”

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

SELECT CLAUSE

ATTRIBUTE EXPRESSIONS WITH AS/1
▸ The keyword AS allows the definition of an alias. Used in attribute expressions,

it defines a new temporary column per the calculated expression

▸ Find the monthly salary of the employees named “White”

44

SELECT Salary / 12 AS MonthlySalary

FROM Employee

WHERE Surname = “White”

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

MonthlySalary

3.00

SELECT CLAUSE

ATTRIBUTE EXPRESSIONS WITH AS/2
▸ Find the salaries of employees named “Brown”, and alias it as “Remuneration”

45

80

45

Remuneration

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

SELECT Salary AS Remuneration

FROM Employee

WHERE Surname = “Brown”

SELECT CLAUSE

DUPLICATES
▸ In relational algebra and calculus the results of queries do not contain duplicates (set

semantics)

▸ In SQL, result sets may have identical rows (bag semantics)

▸ Duplicates rows can be removed using the keyword DISTINCT

▸ This applies also with rows having multiple columns

46

SELECT City

FROM Department

SELECT DISTINCT City

FROM Department

San JonéResearch Sunset Street

Pond Road

London
City

London

Rue Victor Hugo Toulouse
Distribution
Production

Administration

Brighton

DeptName

Planning Bond Street

Address
Bond Street

Department

London
City

San Joné

Toulouse
Brighton
London

London
City

San Joné

Toulouse
Brighton

San JonéResearch Sunset Street

Pond Road

London
City

London

Rue Victor Hugo Toulouse
Distribution
Production

Administration

Brighton

DeptName

Planning Bond Street

Address
Bond Street

Department

SELECT CLAUSE

DISTINCT KEYWORD
▸ Find the code of the products supplied at least by one supplier

47

SELECT DISTINCT CodeP

FROM Supply

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

P2

P4

CodeP

P6

P1

P5

P3

WHERE CLAUSE

WHERE CLAUSE

WHERE CLAUSE

▸ Selection conditions apply to each single tuple resulting from the evaluation
of the FROM clause

▸ Defined as a boolean expression of simple predicates

▸ Simple predicates

▸ comparison between attributes and/or constant values

▸ set membership

▸ textual matching

▸ NULL values

49

WHERE CLAUSE

PREDICATE CONJUNCTION /1
▸ Find the first names and surnames of the employees who work in office number 20 of the
“Administration" department

50

SELECT FirstName, Surname

FROM Employee

WHERE Office = “20” AND Dept = “Administration”

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

FirstName
GreenGus

Surname

WHERE CLAUSE

PREDICATE CONJUNCTION /2
▸ Find the first names and surnames of the employees who work in the “Administration”

department and in the “Production” department

51

SELECT FirstName, Surname

FROM Employee

WHERE Dept = “Administration” AND Dept = “Production”

▸ ???

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

▸ No Results!

WHERE CLAUSE

PREDICATE DISJUNCTION
▸ Find the first names and surnames of the employees who work in either the
“Administration" or the “Production” department

52

SELECT FirstName, Surname

FROM Employee

WHERE Dept = “Administration” OR Dept = “Production”

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

Jackson

Brown

Pauline

Surname

WhiteCharles
Mary

Alice
Bradshaw

Gus

FirstName

Green

WHERE CLAUSE

COMPLEX LOGICAL EXPRESSIONS
▸ Find the first names of the employees named “Brown” who work in the
“Administration” department or the “Production” department

PostgreSQL Logical Operators: https://www.postgresql.org/docs/current/functions-logical.html

53

SELECT FirstName

FROM Employee

WHERE Surname = “Brown” AND (Dept = “Administration” OR Dept = “Production”)

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

Mary
FirstName

WHERE CLAUSE

OPERATOR LIKE /1

▸ Matching string patterns

▸ The character “_” is a matching term for any single character, which must be
found in the specified position

▸ The character “%” is a matching term for any sequence of zero or more
characters

54

WHERE CLAUSE

OPERATOR LIKE /2
▸ Find the code and the name of the products having name starting with the letter “S”

55

SELECT CodeP, NameP

FROM Products

WHERE NameP LIKE “S%”

P4

Sweater
CodeP
P1
P3

NameP

Shirt
Shirt

P5 Skirt

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

WHERE CLAUSE

OPERATOR LIKE /3
▸ Find the employees with surnames that have “r” as the second letter and that end in “n”

56

SELECT *

FROM Employee

WHERE Surname LIKE “_r%n”

Planning 14Brown London80Charles

London

City

Oxford40

Salary
4510

Gus Administration

Dept
Brown

Surname Office
Mary

Green 20

FirstName
Administration

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

WHERE CLAUSE

OPERATOR LIKE /4

PostgreSQL LIKE Operator Reference: https://www.postgresql.org/docs/current/functions-matching.html#FUNCTIONS-LIKE

Other PostgreSQL Pattern Matching Operators: https://www.postgresql.org/docs/current/functions-matching.html

▸ Find Suppliers having the Office address containing the string “Den Haag”

▸ Find Suppliers where the supplier code ends in 2

▸ Find Products that are in storehouses having names that do not contain an “e” as second character

57

WHERE Address LIKE “%Den Haag%”

WHERE CodeS LIKE “_2”

WHERE Storehouse NOT LIKE “_e%”

WHERE CLAUSE

WHICH OF THE FOLLOWING QUERIES RETURN THE SAME RESULT SET?

58

A) Only 1) and 2)

B) Only 3) and 4)

C) 1) and 2) , 4) and 5)

D) All

SELECT *

FROM char_name_100k

WHERE name = 'A'

SELECT *

FROM char_name_100k

WHERE name LIKE 'A'

SELECT *

FROM char_name_100k

WHERE name LIKE ‘A_’

SELECT *

FROM char_name_100k

WHERE name LIKE 'A%'

SELECT *

FROM char_name_100k

WHERE name LIKE 'A%_'

1 2 3

4 5

WHERE CLAUSE

DEALING WITH NULL VALUES

▸ NULL values may mean that:

▸ a value is unknown (exists but it is not known)

▸ a value is not available (exists but it is purposely withheld)

▸ a value is not applicable (undefined for this tuple)

▸ Each individual NULL value is considered to be different from every other NULL value

▸ When a NULL is involved in a comparison operation, the results is considered to be UNKNOWN

▸ SQL uses a three-valued logic

▸ TRUE, FALSE, and UNKNOWN

▸ All logical operators evaluate to TRUE, FALSE, or UNKNOWN

▸ In PostgreSQL, these are implemented as true, false, and NULL

▸ Most of this is common to different SQL database servers, although some servers may return any

nonzero

59

WHERE CLAUSE

COMPARISONS INVOLVING NULL AND THREE-VALUED LOGIC

60

WHERE CLAUSE

THE IS NULL OPERATOR

▸ Find the code and the name of products having no specified Size
▸ AttributeName IS [NOT] NULL

61

SELECT CodeP, NameP

FROM Products

WHERE Size IS NULL

NameP
P5 Skirt

CodeP

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

NULL

P1

48

P5

Storehouse

P3

Products

WHERE CLAUSE

THE IS NULL OPERATOR

▸ Find the code and the name of products having size greater than 44, or that might have
size greater than 44

62

SELECT CodeP, NameP

FROM Products

WHERE Size > 44 OR Size IS NULL

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

NULL

P1

48

P5

Storehouse

P3

Products

P5 Skirt

CodeP

P3
P2

NameP

Shirt
Jeans

ORDERING OF RESULTS

ORDERING OF RESULTS

ORDERING

▸ The ORDER BY clause, at the end of the query, orders the rows of the results

▸ Last operator applied by the database in the query execution plan

▸ Syntax:

▸ The implicit ordering is ASC: ascending

64

ORDER BY OrderingAttribute [asc | desc]

 {, OrderingAttribute [asc | desc]}

ORDERING OF RESULTS

ORDER BY /1

▸ Find the code, name and the size of all the products, in descending order of size

65

SELECT CodeP, NameP, Size

FROM Products

ORDER BY Size DESC

48

40

48
Size

40

42
44

JeansP2
NamePCodeP

ShirtP3

CoatP6
ShirtP4

SweaterP1
SkirtP5

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

ORDERING OF RESULTS

ORDER BY /2

▸ Find all the information about products, in ascending order of name and descending order of size

66

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

SELECT *

FROM Products

ORDER BY NameP, Size DESC

Amsterdam42RedCoatP6
StorehouseSizeColorNamePCodeP

Den Haag48GreenJeansP2

Amsterdam44BluShirtP4
Rotterdam48BluShirtP3

Den Haag40BluSkirtP5
Amsterdam40RedSweaterP1

ORDERING OF RESULTS

ORDER BY /3

▸ Find the code and the american size of all the products, in ascending order of size

67

26P1
AmericanSizeCodeP

26P5

30P4
28P6

34P2
34P3Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

SELECT CodeP, Size - 14 AS AmericanSize

FROM Products

ORDER BY AmericanSize

JOIN

JOIN

QUERYING MULTIPLE TABLES

▸ All possible tuple combinations

▸ What if we want to retrieve:

▸ the name of all the suppliers of product “P2”

69

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

JOIN

CROSS PRODUCT /1
▸ All possible tuple combinations

▸ Find the name of all the suppliers of product ”P2”

70

SELECT NameS

FROM Supplier, Supply

......... ...
S3 Anna Den Haag3

......
AnnaS3 3 Den Haag

...
Den HaagVictor 1S2

...
Den Haag1S2 Victor

...
Amsterdam2JohnS1
AmsterdamS1 John 2

2 AmsterdamS1 John
John 2 AmsterdamS1
John 2S1 Amsterdam
John 2 AmsterdamS1

Amsterdam
Office

2
Shareholders

S1
CodeS NameS

John

... ...
P2S3

... ...
P1S1
...

S1

P2
S1

P1

...

...

...

S1
S2

S1
P5

...

S2

S1

S1
P6

P4

...
P1

P3

P1

S1

CodeS

Supplier Supply

CodeP
P1

...
200
...
300

300

300

300

...

200

...

200

...

100
100

400

300

Amount

JOIN

CROSS PRODUCT /2
▸ Find the name of all the suppliers of product ”P2”

What is the problem with this result set?

71

......... ...
S3 Anna Den Haag3

......
AnnaS3 3 Den Haag

...
Den HaagVictor 1S2

...
Den Haag1S2 Victor

...
Amsterdam2JohnS1
AmsterdamS1 John 2

2 AmsterdamS1 John
John 2 AmsterdamS1
John 2S1 Amsterdam
John 2 AmsterdamS1

Amsterdam
Office

2
Shareholders

S1
CodeS NameS

John

... ...
P2S3

... ...
P1S1
...

S1

P2
S1

P1

...

...

...

S1
S2

S1
P5

...

S2

S1

S1
P6

P4

...
P1

P3

P1

S1

CodeS

Supplier Supply

CodeP
P1

...
200
...
300

300

300

300

...

200

...

200

...

100
100

400

300

Amount

JOIN

SIMPLE JOIN /1

72

SELECT NameS

FROM Supplier, Supply

WHERE Supplier.CodeS = Supply.CodeS

......... ...
S3 Anna Den Haag3

......
AnnaS3 3 Den Haag

...
Den HaagVictor 1S2

...
Den Haag1S2 Victor

...
Amsterdam2JohnS1
AmsterdamS1 John 2

2 AmsterdamS1 John
John 2 AmsterdamS1
John 2S1 Amsterdam
John 2 AmsterdamS1

Amsterdam
Office

2
Shareholders

S1
CodeS NameS

John

... ...
P2S3

... ...
P1S1
...

S1

P2
S1

P1

...

...

...

S1
S2

S1
P5

...

S2

S1

S1
P6

P4

...
P1

P3

P1

S1

CodeS

Supplier Supply

CodeP
P1

...
200
...
300

300

300

300

...

200

...

200

...

100
100

400

300

Amount

=

JOIN

SIMPLE JOIN /2
▸ Supplier.CodeS = Supply.CodeS is a JOIN CONDITION

73

S4 Angela 2 Amsterdam
AmsterdamAngela 2S4

S4 Amsterdam2Angela
Den Haag3S3 Anna

S2 Den Haag1Victor
Den Haag1VictorS2
AmsterdamS1 John 2

2 AmsterdamS1 John
John 2 AmsterdamS1
John 2S1 Amsterdam
John 2 AmsterdamS1

Amsterdam
Office

2
Shareholders

S1
CodeS NameS

John S1

P4

S2 300

P5

S3

P2

S4 P3

P3S1

P2

S4

S1

400

400S2

S1

S4 300

P1

P1

200

300

S1

200

400

P6

S1

200

P4
P5

P2

100

200

100

AmountCodePCodeS

Supplier Supply

JOIN

OUR ORIGINAL QUERY
▸ Find the name of all the suppliers of product ”P2”

74

SELECT NameS

FROM Supplier, Supply

WHERE Supplier.CodeS = Supply.CodeS AND CodeP = “P2"

Anna

John
Victor

NameS

S4 Angela 2 Amsterdam
AmsterdamAngela 2S4

S4 Amsterdam2Angela
Den Haag3S3 Anna

S2 Den Haag1Victor
Den Haag1VictorS2
AmsterdamS1 John 2

2 AmsterdamS1 John
John 2 AmsterdamS1
John 2S1 Amsterdam
John 2 AmsterdamS1

Amsterdam
Office

2
Shareholders

S1
CodeS NameS

John S1

P4

S2 300

P5

S3

P2

S4 P3

P3S1

P2

S4

S1

400

400S2

S1

S4 300

P1

P1

200

300

S1

200

400

P6

S1

200

P4
P5

P2

100

200

100

AmountCodePCodeS

Supplier Supply

JOIN

ANOTHER QUERY

If there are N tables in the FROM clause, at least N − 1 JOIN conditions in the
WHERE clause

▸ Find the name of supplier of at least one red product

75

SELECT DISTINCT NameS

FROM Supplier, Supply, Products

WHERE Supplier.CodeS = Supply.CodeS AND Supply.CodeP = Product.CodePCodeP

 AND Color = “Red"

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

Victor

NameS
John

JOIN

USING AS KEYWORD FOR TABLES

▸ All possible tuple combinations

▸ Find the code pairs of suppliers having their office in the same city

76

SELECT S1.CodeS, S2.CodeS

FROM Supplier AS S1, Supplier AS S2

WHERE S1.Office = S2.Office

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier AS S1

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier AS S2

JOIN

RESULT /1
▸ Find the code pairs of suppliers having their office in the same city

‣ Pairs of identical values

‣ Permutations of the same pair of values

77

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier AS S1

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier AS S2

S2

S4

S3

S5

S2

S2

S5

S3

S3

S1.CodeS

S3

S2

S1

S1

S1

S4

S4

S1

S2.CodeS

S4

JOIN

RESULT /2

‣ Remove pairs with the same code value

▸ Find the code pairs of suppliers having their office in the same city

78

SELECT S1.CodeS, S2.CodeS

FROM Supplier AS S1, Supplier AS S2

WHERE S1.Office = S2.Office AND S1.CodeS <> S2.CodeS

S2

S4

S3

S5

S2

S2

S5

S3

S3

S1.CodeS

S3

S2

S1

S1

S1

S4

S4

S1

S2.CodeS

S4

JOIN

RESULT/3

▸ Find the code pairs of suppliers having their office in the same city

‣ Let’s keep only the right ones

79

S2

S4

S3

S5

S2

S2

S5

S3

S3

S1.CodeS

S3

S2

S1

S1

S1

S4

S4

S1

S2.CodeS

S4

SELECT S1.CodeS, S2.CodeS

FROM Supplier AS S1, Supplier AS S2

WHERE S1.Office = S2.Office AND S1.CodeS < S2.CodeS

JOIN

JOINS IN SQL92
▸ SQL-2 introduced an alternative syntax for the representation of JOINs,

representing them explicitly in the from clause:

▸ JoinType can be any of INNER, RIGHT [OUTER], LEFT [OUTER] or FULL
[OUTER], permitting the representation of outer joins

▸ The keyword NATURAL may precede JoinType

80

SELECT TargetList

FROM Table [[AS] Alias]

 { [JoinType] JOIN Table [[AS] Alias] [ON BooleanExpression || USING JoinColumns]}

[WHERE Conditions]

http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

JOIN

JOINS IN SQL92
▸ NATURAL JOIN on two relations R and S

▸ No join condition specified

▸ Implicit EQUI JOIN condition for each pair of attribute with same name from R and S

▸ INNER JOIN

▸ Default type of join in a joined table (equivalent to JOIN)

▸ Must specify JOIN attributes

▸ Tuple is included in the results only if a matching tuple exists in the other relation

▸ LEFT OUTER JOIN

▸ Every tuple in left table must appear in result

▸ If no matching tuple: values for attributes in the right table set to NULL

▸ RIGHT OUTER JOIN

▸ Every tuple in right table must appear in result

▸ If no matching tuple: values for attributes in the left table set to NULL

▸ FULL OUTER JOIN
▸ If no matching tuple: values for attributes in the left and/or right tables set to NULL

81

JOIN

INNER JOIN

‣ Same results as in Slide 58

▸ Find the name of supplier of at least one red product

82

SELECT DISTINCT NameS

FROM Products JOIN Supply USING (CodeP)

 JOIN Supplier USING (CodeS)

WHERE Color = “Red"

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

Coat

AmsterdamSweater

P4

Amsterdam
Den Haag

Blu
44

Red

AmsterdamBlu

SizeColor
Red 40

42

Green Den HaagJeans

Blu

CodeP

Skirt

48

P6

P2
Rotterdam

Shirt
Shirt

NameP

40

P1

48

P5

Storehouse

P3

Products

Victor

NameS
John

JOIN

LEFT OUTER JOIN
▸ Find the code and name of Supplier, and the code of the supplied Products, showing also

suppliers of no products

83

SELECT Supply.CodeS, Supplier.NameS, Supply.CodeP

FROM Supplier LEFT OUTER JOIN Supply

 ON Supplier.CodeS = Supply.CodeS

S5 NULLPaul

S2

S4

CodeS

S2

Anna

CodeP

John
P3

Angela
S4

P5

John P2
JohnS1

S1

P5

S1

P2

Angela
P4

S1
John

P2

Angela

John

P1

NameS
P1

Victor

S1

S4

John

S3

S1
Victor

P3

P4

P6

AGGREGATE QUERIES

AGGREGATE QUERIES

AGGREGATE QUERIES

▸ Aggregate Query: query in which the result depends on the consideration of
sets of rows

▸ The result is a single (aggregated) value

▸ Expressed in the SELECT clause

▸ aggregate operators are evaluated on the rows accepted by the WHERE conditions

▸ SQL92 offers five aggregate operators

▸ COUNT, SUM, MAX, MIN, AVG

▸ Except for COUNT, these functions return a NULL value when no rows are selected

85

AGGREGATE QUERIES

OPERATOR COUNT

▸ COUNT returns the number of rows or distinct values

▸ The DISTINCT keyword forces the count of distinct values in the attribute list

86

COUNT (<* | [DISTINCT | ALL] TargetList >)

AGGREGATE QUERIES

COUNT EXAMPLE /1
▸ Find the number of suppliers in the database

SELECT COUNT (*)

 FROM Supplier

5
count

Amsterdam
Utrecht

Den Haag
Den Haag
Amsterdam
Office

3S5 Paul

Anna

2
Shareholders

2

Victor 1
S3
S2
S1

3

CodeS

S4 Angela

NameS
John

Supplier

87

AGGREGATE QUERIES

COUNT EXAMPLE /2
▸ Find the number of suppliers with at least one supply

SELECT COUNT (*)

 FROM Supply

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

12
count

▸ Is it right?

▸ Equivalent to SELECT COUNT(CodeP)
or SELECT COUNT(CodeS)

88

AGGREGATE QUERIES

COUNT EXAMPLE /3
▸ Find the number of suppliers with at least one supply

SELECT COUNT (DISTINCT CodeS)

 FROM Supply

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

4
count

89

AGGREGATE QUERIES

COUNT EXAMPLE /4
▸ Count the number of suppliers that supply the product “P2”

SELECT COUNT(*)

 FROM Supply

 WHERE CodeP = ‘P2’

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

3
count

90

▸ Is it right?

AGGREGATE QUERIES

OPERATORS SUM,MAX,MIN,AVG

▸ SUM,MAX,MIN,AVG

▸ Allowed arguments are attributes or expressions

▸ SUM,AVG

▸ Only numeric types

▸ MAX,MIN

▸ Attribute must be sortable

▸ Applied also on strings and timestamps

91

AGGREGATE QUERIES

SUM EXAMPLE
▸ Find the total number of supplied items for product “P2”

SELECT SUM(Amount)

 FROM Supply

 WHERE CodeP = ‘P2’

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

92

200

S3

CodeS

400
P2

P2
S2 P2

CodeP
S1

200

Amount

800
count

AGGREGATE QUERIES

NULL VALUES AND AGGREGATES

▸ All aggregate operations ignore tuples with NULL values on the aggregated
attributes

▸ COUNT: number of input rows for which the value of expression is not NULL

▸ SUM,AVG,MAX,MIN: NULL values are not considered

▸ The COALESCE function can be used to force a value for NULL

93

SELECT AVG(season_nr)

 FROM title_100k

SELECT AVG(COALESCE(season_nr,1))

 FROM title_100k

AGGREGATE QUERIES

AGGREGATE QUERY AND TARGET LIST

▸ This is an incorrect query, although syntactically admissible

▸ Whose name? The target list must be homogeneous 

▸ The GROUP BY clause will help us

94

SELECT FirstName, Surname, MAX(Salary)

 FROM Employee JOIN Department ON Dept = DeptName

 WHERE Department.City = ‘London’

AGGREGATE QUERIES

GROUPING ROWS
▸ Queries may apply aggregate operators to subsets of rows

95

▸ For each product find the total amount of supplied items

SELECT CodeP, SUM(Amount)

 FROM Supply

 GROUP BY CodeP

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply AmountCodeS CodeP
300P1S1
300P1S2

200P2S1

200P2S3
400P2S2

400P3S1
200P3S4

200P4S1
300P4S4

100P5S1
400P5S4

100P6S1

P6 100
P5 500
P4 500

Amount

P3

P1 600
CodeP

800
600

P2

AGGREGATE QUERIES

GROUP BY CLAUSE /1
▸ The order of the grouping attributes does not

matter

▸ The SELECT clause can contain

▸ Attributes specified in the GROUP BY clause

▸ Aggregated functions

▸ Attributes univocally determined by attributes

already specified in the GROUP BY clause

96

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

San JonéResearch Sunset Street

Pond Road

London
City

London

Rue Victor Hugo Toulouse
Distribution
Production

Administration

Brighton

DeptName

Planning Bond Street

Address
Bond Street

Department

SELECT Office

 FROM Employee

 GROUP BY Dept

▸ Incorrect Query

AGGREGATE QUERIES

GROUP BY CLAUSE /2
▸ The order of the grouping attributes does not

matter

▸ The SELECT clause can contain

▸ Attributes specified in the GROUP BY clause

▸ Aggregated functions

▸ Attributes univocally determined by attributes

already specified in the GROUP BY clause

97

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

San JonéResearch Sunset Street

Pond Road

London
City

London

Rue Victor Hugo Toulouse
Distribution
Production

Administration

Brighton

DeptName

Planning Bond Street

Address
Bond Street

Department

SELECT DeptName,D.City,COUNT(*)

 FROM Employee E JOIN Department D ON E.Dept=D.DeptName

 GROUP BY DeptName

▸ Incorrect Query

AGGREGATE QUERIES

GROUP BY CLAUSE /3
▸ The order of the grouping attributes does not

matter

▸ The SELECT clause can contain

▸ Attributes specified in the GROUP BY clause

▸ Aggregated functions

▸ Attributes univocally determined by attributes

already specified in the GROUP BY clause

98

4620 ToulouseAlice ProductionJackson
75 BrightonBradshaw 40Pauline Administration
7 73Chen WorthingPlanningLaurence

Planning 14Brown London80Charles

London
City

Oxford
Dover

Toulouse
40

Salary
45

45

36

16

10

Gus
Production

Administration

Dept
Brown

Charles

Surname Office
Mary

Neri

20
Green

Distribution
20

White

FirstName

Jackson

Administration

Employee

San JonéResearch Sunset Street

Pond Road

London
City

London

Rue Victor Hugo Toulouse
Distribution
Production

Administration

Brighton

DeptName

Planning Bond Street

Address
Bond Street

Department

SELECT DeptName,D.City,COUNT(*)

 FROM Employee E JOIN Department D ON E.Dept=D.DeptName

 GROUP BY DeptName, D.City

▸ Correct Query

AGGREGATE QUERIES

GROUPING ROWS
▸ Queries may apply aggregate operators to subsets of rows

99

▸ For each product sold by suppliers in Den Haag, find the total amount of supplied items

SELECT CodeP, SUM(Amount)

 FROM Supply JOIN Supplier ON Supply.CodeS = Supplier.CodeS

 WHERE Office = ‘Den Haag’

 GROUP BY CodeP

S42 P5S4 Amsterdam 400Angela
Amsterdam 300S42 P4S4 Angela

2002 P3S4 Angela S4Amsterdam
Den Haag P2S3 Anna 3 200S3

Victor S2S2 1 Den Haag P2 400
Victor S2 300P1S2 Den Haag1

S2 3001 P1Victor Den HaagS2
John 100Amsterdam P6S12S1

Amount

100

200

200
400

300

P4

CodeP

P3

P5

P1
P2

CodeS
S1

S1
S1

S1

S1

Amsterdam
Amsterdam

Amsterdam
Amsterdam
Amsterdam
Office

2S1 John

John

2
Shareholders

2

John 2
S1
S1
S1

2

CodeS

S1 John

NameS
John

Supplier Supply

CodeP Amount
300P1
300P1

200P2
400P2

P2
600

CodeP

600

Amount
P1

AGGREGATE QUERIES

HAVING CLAUSE /1
▸ Conditions on the result of an aggregate operator require the HAVING clause

▸ Only predicates containing aggregate operators should appear in the argument of the HAVING clause

100

▸ Find the departments in which the average salary of employees working in office number 20 is higher than 25

SELECT Dept

 FROM Employee

 WHERE Office = ‘20’

 GROUP BY Dept

 HAVING AVG(Salary) > 25

AGGREGATE QUERIES

HAVING CLAUSE /2

101

▸ Find the total number of supplied items for products that count at least 600 total supplied items

SELECT CodeP, SUM(Amount)

 FROM Supply

 GROUP BY CodeP

 HAVING SUM(Amount) >= 600

AmountCodeS CodeP
300P1S1
300P1S2

200P2S1

200P2S3
400P2S2

400P3S1
200P3S4

200P4S1
300P4S4

100P5S1
400P5S4

100P6S1

P1

300

300

300

P5 400

200

S3

CodeS

400

P2
S1

P2

200

S4

S4 200

S2

S1
S2

100

S1
P5 100

P2

CodeP

S4

S1

S1

400

P6

P4

200
P3
P4

P3

P1

Amount

S1

Supply

Amount

P3

P1 600
CodeP

800
600

P2

Coat 42P6 100Red S1Amsterdam P6
Den HaagP5 40Skirt 400S4 P5Blu

40 100S1 P5Den HaagP5 Skirt Blu
BluShirt 44 300AmsterdamP4 S4 P4

Amsterdam 200Blu S144 P4ShirtP4
P3 Rotterdam P3Shirt Blu 200S448

400
200

300

400

300

Amount

200

P1

P2
P2

P2
P1

CodeP

P3S1

CodeS

S3
S2

S1
S2
S1

Shirt

AmsterdamSweater

P2

Rotterdam
Den Haag

Green
48

Blu

Den HaagGreen

SizeColor
Red 40

48

Red AmsterdamSweater

Green

CodeP

Jeans

40

P3

P1
Den Haag

Jeans
Jeans

NameP

48

P1

48

P2

Storehouse

P2

Products Supply

AGGREGATE QUERIES

HAVING CLAUSE /3

102

▸ Find the code of red products supplied by more than one supplier

SELECT Supply.CodeP

 FROM Supply JOIN Products ON Supply.CodeP = Product.CodeP

 WHERE Color = ‘Red’

 GROUP BY Supply.CodeP

 HAVING COUNT(*) > 1

P1
CodeP

INTERACTING WITH DATABASES

EXTENSIVE SQL LECTURE NOTES AVAILABLE

104

Resources
▸ "Fundamentals of Database Systems", 7th Edition, 2016 (Global Edition). Authors:

Ramez Elmasri, Shamkant Navathe. ISBN10: 1292097612. ISBN13: 9781292097619

▸ “Database Systems: Concepts, Languages & Architectures". Paolo Atzeni, Stefano Ceri,
Stefano Paraboschi, Riccardo Torlone

Digital Product
Development

IOB2-2 Module 4

Data

By Alessandro Bozzon

